Frequency: Going Above 5.0 GHz

One of the major highlights that AMD is promoting with the new Zen 3 core and Ryzen 5000 processors how the company has kept the same power and yet delivered both more frequency, more performance per MHz, and ultimately more performance, despite using the same TSMC N7 manufacturing process node. The updated efficiency of the core, assuming the design can scale in frequency and voltage, can naturally lead to those higher frequency numbers. One of AMD’s humps in competing against Intel of late has been, despite any IPC difference, the higher frequency of Intel’s 14nm process. With Zen 3, we are seeing AMD drive those higher numbers – and some numbers higher than on the box.

When AMD announced the top 16-core processor, the Ryzen 9 5950X, it gave a base frequency of 3400 MHz and a turbo frequency of 4900 MHz. This turbo value was so close to the ‘magic’ number of 5000 MHz, and would yield an additional angle for AMD in its marketing strategy and promotional toolkit. Ultimately scoring a 5000 MHz version comes down to binning – AMD would have detailed analysis of the chiplets it makes at TSMC, and it would see how many chiplets could hit this mark. The question then becomes if there would be enough to satisfy demand, or if those chiplets were better suited in higher efficiency future EPYC products where the margins are higher.

We have seen what happens when you launch a processor that can’t be built in the numbers required: Intel’s Core i9-10900K, at 5.3 GHz turbo, was a super high frequency but couldn’t be built enough to meet demand, and Intel launched the Core i9-10850K – an identical chip except now down to 5.1 GHz, which was an easier target to meet.

If you’ve read through this far in the review, you have already seen that we’re here quoting going above 5.0 GHz for the Ryzen 9 5950X. Despite having an official single core turbo of 4.9 GHz, the processor has an internal metric of ‘peak’ frequency assuming there is sufficient thermal and power headroom of 5025 MHz. This in effect should be its official turbo value. In combination with the default precision boost behavior, we saw a very regular and sustained 5050 MHz.

We quizzed AMD on this. We were told that the 4.9 GHz value for single core turbo should cover all situations, based on BIOS version, motherboard used, and the quality of the silicon inside. The company is happy to let the base precision boost algorithms (or what eXtreme Frequency Range/XFR was rolled into) enable something higher than 4.9 GHz if it can, and they confirmed that with a standard high-end AM4 built and this processor, 5025/5050 MHz should be easily achievable with a large proportion of 5950X retail hardware.

So Why Does AMD Not Promote 5.0 GHz?

From the standpoint of ‘I’ve dealt with press relations from these companies for over 10 years’, I suspect the real answer for AMD not promoting 5.0 GHz is more about sculpting the holistic view of Zen 3 and Ryzen 5000.

If the company were to promote/place the Ryzen 9 5950X as AMD’s second ever processor to go above 5.0 GHz (the first was the FX-9590 back in 2013), or reaching 5.0 GHz on 7nm, then this achievement would necessarily overshadow all of AMD’s other achievements on Zen 3. Rather than pointing to the new core, the increased IPC, or the efficiency of the new processor, everyone would be pointing to the 5.0 GHz frequency instead. Achieving that value and promoting it as such effectively masks the ability for AMD (and the press) to be able to discuss some of the other major wins – that 5.0 GHz win would come off as a poisoned chalice. Not only this, but it might spur users to purchase them at a higher rate; you might consider this a win from both a revenue and gross margins perspective, but it does tie in to AMD’s ability to produce the chiplets at this frequency or if they want to use them for other higher margin products.

Of course, some of this is vanity. AMD would rather speak to its engineering expertise and successes, its teams of engineers, and dive into the specific performance wins, especially for a product where the claims about absolute performance leadership are in-of-themselves a strong statement. Users might conflate the fact that AMD reaching 5.0 GHz was the only reason for performance leadership, and that’s ultimately not the narrative that AMD wants to cultivate.

It also leaves the door open to a future product that will certainly say 5.0 GHz on the box. When AMD has extracted the marketing performance of its increased IPC and efficiency, it can open that window and reap another focused review cycle.

In short: effective marketing is a skill, especially when there are multiple angles that can be leveraged for promotional tools. Identifying how you layer those communications could drastically affect, multiply, or amplify product perception. In what order you execute those multiples and amplifications can make or break a product cycle.

From a member of the press’ perspective, the more I interact with communications teams, the more I understand how they think.

Frequency Reporting

With all that being said we need an updated table showing our measured peak and all-core turbo frequencies for the Ryzen 5000 series. Going through each of the four processors, as part of our power testing we hoover up all the data for per-core power and per-core frequencies as we scale from idle to full-CPU load. Part of that data shows:

Ryzen 5000 Series Measured Data
AnandTech Listed
1T
Firm
ware
1T*
Data
1T
  Listed
Base
Data
nT
  TDP
(W)
Data
(W)
nT
W/core
Ryzen 9 5950X 4900 5025 5050   3400 3775   105 142 6.12
Ryzen 9 5900X 4800 4925 4950   3700 4150   105 142 7.85
Ryzen 7 5800X 4700 4825 4825   3800 4450   105 140 14.55
Ryzen 5 5600X 4600 4625 4650   3700 4450   65 76 10.20
*Listed 1T: The official number on the box
*Firmware 1T: 'Maximum Frequency' as listed in CPU registers in AGESA 1100

The main takeaway from this data, aside from those measured turbo values, is that one of AMD’s new Zen 3 cores can hit 4000 MHz in around 7 W, as indicated by the per core values on the 5950X and 5900X. For the future AMD Milan EPYC enterprise processors, this is vital information to see where exactly some of those processors will end up within any given power budget (such as 225 W or 280 W).

Also of note are the last two processors – both processors are reporting 4450 MHz all-core turbo frequency, however the 5800X is doing it with 14.55 W per core, but the 5600X can do it with only 10.20 W per core. In this instance, this seems that the voltage of the 5800X is a lot higher than the other processors, and this is forcing higher thermals – we were measuring 90ºC at full load after 30 seconds (compared to 73ºC on the 5600X or 64ºC on the 5950X), which might be stunting the frequency here. The motherboard might be over-egging the voltage a little here, going way above what is actually required for the core.

Moving back to the halo chip, we can compare the loaded Core Frequency scaling of the new Ryzen 9 5950X with Zen 3 cores against the previous generation Ryzen 9 3950X with Zen 2 cores. It looks a little something like this.

Note that the 3950X numbers are updated from our original 3950X review, given that there have been a wide variety of BIOS updates since. Both CPUs exhibit a quick drop off from single core loading, and between 3-8 core load it remains steady, with the new processor anywhere from 400-450 MHz higher. As we scale up beyond eight cores, the two parts actually converge at 14-core load, and when we sit at a full CPU, our Ryzen 9 5950X is 125 MHz lower than the 3950X.

Should we look much into this? The listed base frequency of the Ryzen 9 5950X is 100 MHz lower than the Ryzen 9 3950X (3400 MHz vs 3500 MHz), and we’re seeing a 125 MHz all-core difference. This has the potential to indicate that Zen3 has a higher current density when all the cores are active, and due to the characteristics of the silicon and the core design (such as the wider core and faster load/store), there has to be this frequency difference to maintain the power when all cores are loaded. Naturally the benefit of Zen 3 is that higher performance per core, which should easily go beyond the 125 MHz difference. The benchmarks over the next dozen pages will showcase this.

New and Improved Instructions TDP and Per-Core Power Draw
Comments Locked

339 Comments

View All Comments

  • Luminar - Thursday, November 5, 2020 - link

    Cache Rules Everything Around Me
  • SIDtech - Thursday, November 5, 2020 - link

    Hi Andrei,

    Excellent work. Do you know how this performance shapes up against the Cortex A77 ?
  • t.s - Friday, November 6, 2020 - link

    Seconded. Want to know how the likes of ryzen 4 4350G or 5600 versus Cortex A77 or A78.
  • Kangal - Saturday, November 7, 2020 - link

    It's hard to say, because it really depends on the instruction/software as it is very situational. It also depends on the type of device it is powering, you can move up from Phones, to Thin Tablets, to Thick Laptops, to Large Desktops, and upto a Server. Each device offers different thermal constraints.

    The lower-thermal devices will favour the ARM chip, the mid-level will favour AMD, and the higher-thermal devices will favour Intel. That WAS the rule of thumb. In general, you could say Intel's SkyLake has the single-threaded performance crown, then AMD's Zen+ loses to it by a notable margin but beats it in multi-threaded tasks, and then going to an ARM Cortex A76 will have the lowest single-thread but the highest multi-threaded performance.

    Now?
    Well, there's the newly launched 2021 AMD Zen3 processor. And the upcoming 2021 ARM Cortex-X Overclocked Big-core using the new A78 microarchitecture. Lastly there's the 2022 Intel Rocket Lake yet to debut. So it's too early to tell, we can only make inferences.
  • Kangal - Saturday, November 7, 2020 - link

    Here is my personal (yet amateur) take on the future 2020-2022 standpoints between the three racers. Firstly I'll explain what the different keywords and attributes mean
    (from most technical to most real-world implication)

    Total efficiency: (think Full Server / Tractor) how much total calculations versus total power draw
    Multi-threaded: (think Large Desktop / Truck) how much total calculations
    Single-threaded: (think Thick Laptop / Car) how much priority calculations
    IPC performance: (think Thin Tablet / Motorbike) how much priority calculations at desirable frequency/voltage/power-draw

    *Emulating:
    Having a "simple" ARM chip running "complex" x86 instructions. Such as running 32bit or 64bit OS X or Windows programs, via new techniques of emulation using a partial-hardware and hybrid-software solutions. I think the hit to efficiency will be around x3, instead of the expected x12 degradation.

    So here are the lists (from most technical to most real-world implication)
    Simple Code > Mixed code > Recommended Solution

    Here's how they stack up when running identical new code (ie Modern Apps):
    Total efficiency: ARM >>>> AMD >> Intel
    Multi-threaded: ARM > AMD > Intel
    Single-threaded: Intel = AMD > ARM
    IPC performance: ARM >>> AMD > Intel

    Now what about them running legacy code (ie x86 Program):
    Efficiency + *emulating: AMD > Intel >> ARM
    Multi + *emulating: AMD > Intel >> ARM
    1n + *emulating: Intel = AMD >>> ARM
    IPC + *emulating: AMD > Intel > ARM

    My recommendation?
    Full Server: 60% legacy 40% new code. This makes ARM the best option by a small margin.
    Large Desktop: 80% legacy 20% new code. AMD is the best option with modest margin.
    Thick Laptop: 70% legacy 30% new code. Intel is the best. AMD is very close (tied?) second.
    Thin Tablet: 10% legacy 90% new code. ARM is the best option by huge margin.
  • Tomatotech - Monday, November 9, 2020 - link

    Excellent post, but worth pointing out that *all* modern chips now emulate x86 and x64 code. They run a front end that takes x86 / x64 machine code then convert that into RISC code and that goes through various microcode and translation layers before being processed by the backend. That black box structure has allowed swapping out and optimising the back end for decades while maintaining code compatibility on the front end.

    So it’s not as simple to differentiate between the various chips as you make it out to be.
  • Gondalf - Sunday, November 8, 2020 - link

    I don't know. Looking Spec results, we can say Anandtech is absolutely unable to set a Spec session correctly. From the review Zen 2 is slower per Ghz than old Skylake in integer, that is absolutely wrong in consumer cores (in server cores yes), even worse Ice Lake core is around fast as old Skylake per GHz.
    Basically this review is rushed and very likely they have set all AMD compiler flags on "fast" to do more contacts and a lot of hipe.
    My God, for Anandtech Zen 3 is 35% faster in the global Spec values than Zen 2. Not even AMD worst marketing slide say this. We have Zen 4 here not Zen 3. Wait wait please.
    A really crap review, the author need to go back to school about Spec.

    Obviously the article do not say that 28W Tiger Lake is unable to run at 4.8Ghz for more than a couple of seconds, after this it throttes down, so the same Willow Cove core on a desktop Cpu could destroy Zen 3 without mercy on a CB session. Not to mention the far slower memory subsystem of a mobile cpu.

    Basically looking at games results, Rocket Lake will eclipse this core forever. AMD have nothing of new in its hands, they need to wait Zen 4
  • Qasar - Sunday, November 8, 2020 - link

    yea ok gondalf, trying to find ways that your beloved intel doesnt lose at everything now ??
    accept it, amd is faster then intel across the board.
  • Spunjji - Monday, November 9, 2020 - link

    That's a strange claim about Tiger Lake performance, Gondalf, because I seem to recall Intel seeding all the reviewers with a laptop that could run TGL at 4.8Ghz boost 'til the cows come home - and that's what Anandtech used to get that number. It's literally the best they can do right now. You're right of course - in actual shipping ultrabooks, TGL is a hot PoS that cannot maintain its boost clocks. Maybe by 2022 they'll finally put Willow Cove into a shipping desktop CPU.

    "Basically looking at games results, Rocket Lake will eclipse this core forever"
    If by "eclipse" you mean gain a maximum 5% advantage at higher clock speeds and nearly double the power draw then sure, "eclipse", yeah. 🤭

    I love your posts here. Please, never stop stepping on rakes like Sideshow Bob.
  • macroboy - Saturday, December 12, 2020 - link

    LOL look at AMD's Efficiency and sustained core clocks, Intel runs too hot to stay at 5ghz for very long. meanwhile Zen3 plows along at 55C no problem, *you're the one who needs to check your facts.

Log in

Don't have an account? Sign up now