AnandTech Storage Bench - Light

Our Light storage test has relatively more sequential accesses and lower queue depths than The Destroyer or the Heavy test, and it's by far the shortest test overall. It's based largely on applications that aren't highly dependent on storage performance, so this is a test more of application launch times and file load times. This test can be seen as the sum of all the little delays in daily usage, but with the idle times trimmed to 25ms it takes less than half an hour to run. Details of the Light test can be found here. As with the ATSB Heavy test, this test is run with the drive both freshly erased and empty, and after filling the drive with sequential writes.

ATSB - Light (Data Rate)

As with the Heavy test, the SLC cache of the Intel SSD 660p is extremely beneficial and brings the average data rate of the 660p up into high-end NVMe territory. When the drive is full and the SLC cache has been reduced to its minimum size, performance suffers and drops below the Crucial MX500 mainstream SATA drive but not all the way down to the level of the Toshiba RC100 DRAMless NVMe SSD.

ATSB - Light (Average Latency)ATSB - Light (99th Percentile Latency)

The best-case latency scores from a freshly-erased 660p are acceptable for a high-end NVMe SSD and excellent for an entry-level drive. In the worst case of a full drive, the average latency is far higher but still low enough that the drive won't actually feel much slower. The 99th percentile latency climbs very high by SSD standards, but is still barely up into the average latency range of hard drives.

ATSB - Light (Average Read Latency)ATSB - Light (Average Write Latency)

On the Light test, the average read latency of the 660p stays comfortably below that of SATA drives even for the worst-case full drive test run, and only the average write latency shows a serious problem from filling up the whole drive and not giving it enough time to empty the now-reduced SLC cache.

ATSB - Light (99th Percentile Read Latency)ATSB - Light (99th Percentile Write Latency)

The full-drive 99th percentile write latency of the 660p on the Light test is almost as bad as the 600p or the Toshiba RC100. Otherwise, the 660p doesn't have any worrying QoS problems on this test and users won't notice serious pauses from the drive.

ATSB - Light (Power)

The energy usage of the 660p on the Light test is below most other NVMe drives when the test is run on an empty drive, and even with the extra background work and longer test duration of the full-drive test run the 660p is only a little less efficient than the average for this bunch of NVMe SSDs.

AnandTech Storage Bench - Heavy Random Performance
Comments Locked

86 Comments

View All Comments

  • southleft - Tuesday, May 14, 2019 - link

    SSDs replaced under warranty by the maker can sometimes have a silver lining, so to speak. Some years ago we had an Intel X25 80GB fail. Intel replaced it with a newer model 320 which was basically the same but updated to SATA III. We also had a Sandisk Ultra 120GB fail, and Sandisk replaced it with an Ultra 2. These newer replacement models are still running OK some 6 years later, for what it's worth!
  • chrcoluk - Wednesday, September 25, 2019 - link

    I agree, this is more important than hitting embargo date for publishing.

    Its the content not the date that matters. If it takes a year to do it, then so be it. I never buy hardware on release date, to me that's just stupid.
  • Oxford Guy - Tuesday, August 7, 2018 - link

    People trusted Samsung with the 840 and then, oops...

    The real rule is verify then trust.
  • mapesdhs - Wednesday, August 8, 2018 - link

    One thing about the 840 EVO issue which was a real pain was trying to find out if the same thing affected the standard 840. In the end my conclusion was yes, but few sites bothered to mention it. Oddly enough, of the many SSDs I have, one of the very few that did die was a standard 840. I never bought an 840 EVO because of the reports that came out, but I have a fair few 840 Pros and a heck of a lot of OCZs.
  • Spunjji - Wednesday, August 8, 2018 - link

    It was pretty obvious that the 840 was affected because it used the same NAND as the 840 Evo, just without the caching mode. It was also pretty obvious that Samsung didn't care because it was "old" so they never properly fixed it.
  • OwCH - Wednesday, August 8, 2018 - link

    Ryan, I love that you will. It is not easy for the user to find real world data on these things and it is, at least to me, information that I want before making the decision to buy a drive.

    Looking forward to it!

    Thanks!
  • Solid State Brain - Tuesday, August 7, 2018 - link

    The stated write endurance should already factor data retention, if it follows JEDEC specifications (JESD219A). For consumer drives, it should be be when the retention time for freshly stored data drops below 1 year after the SSD is powered off, at 30°C.
  • BurntMyBacon - Wednesday, August 8, 2018 - link

    The Samsung 840 EVO would like to have a word with you.
  • eastcoast_pete - Wednesday, August 8, 2018 - link

    Yes, it should factor data retention, and it should follow JEDEC specs. The problem is the "should". That doesn't mean it or they do. I found that "Trust but verify" is as important in IT as it is in life. Even the biggest names screw up, at least occasionally.
  • IntenvidiAMD - Tuesday, August 7, 2018 - link

    Are there any reviewers that do test that?

Log in

Don't have an account? Sign up now