We want to have every desktop CPU since 2010 tested on our new benchmarks. 

Updating our testing suite is all well and good, but in order for users to find the data relevant, it has to span as many processors as possible. Using tools such as Intel's ARK, Wikipedia, CPU-World and others, I have compiled a list of over 800+ x86 processors (actually 900+ when this article goes live) which qualify. At the highest level, I am splitting these into four categories:

  1. Intel Consumer (Core i-series, HEDT) 
  2. Intel Enterprise (Xeon, Xeon-W, 1P, 2P)
  3. AMD Consumer (Ryzen, FX, A-Series) 
  4. AMD Enterprise (EPYC, Opteron) 

Within both AMD and Intel, the consumer and enterprise arms of each company are discretely different business units, with product teams, and rarely is there any cross-over. The separation of the departments is easy to follow, in that ‘Consumer’ basically stands for mainstream processors that are aimed at machines a user or an OEM could build with off-the-shelf parts, and typically do not support ECC memory. ‘Enterprise’ is going to refer to processors that might end up in workstations, servers or data centers, that have professional grade features, and most of these parts do support ECC memory.

Three boxes of CPUs. Less than half

The next level of separation for the processors, for our purposes, is going to be under the heading ‘family’. Family is a term that typically groups the processors by the microarchitecture, but could also have separation based on socket or features. For CPU Overload, choosing one high-level category breaks down like this:

  1. AMD Consumer (360+ processors), inc Pro 
    • Ryzen 3000 (Threadripper, Ryzen 9/7/5/3; 7nm Zen2)
    • Ryzen 2000 (Threadripper, Ryzen 7/5/3; 12+ Zen+)
    • Ryzen 1000 (Threadripper, Ryzen 7/5/3; 14nm Zen)
    • Bristol Ridge (A12 to Athlon X4, 28nm AM4-based Excavator v2 APUs)
    • Carrizo (Athlon X4, 28nm FM2+ Excavator)
    • Kaveri Refresh (A10 to Athlon X2, FM2+)
    • Kaveri (A10 to Sempron X2, FM2+)
    • Richland (A10 to Sempron X2, FM2+ Piledriver)
    • Trinity (A10 to Sempron X2, FM2/2+ Steamroller)
    • Llano (A8 to Sempron X2, 32nm FM1 K10)
    • Kabini (FM1, 28nm Jaguar)
    • Vishera (FX-9590 to FX-4300, 32nm AM3 Piledriver)
    • Zambezi (FX-8100 to FX-4100, 32nm AM3 Bulldozer)
    • AM3 Phenom II X6 to X4 (K10, Thuban/Zosma/Deneb)
    • (Optional) Other AM3 (K10, Zosma, Deneb, Propus, Heka, etc)
    • (Optional) Other AM2 (Agena, Toliman, Kuma)

Neither AMD nor Intel provides complete lists of the processors it launched within a certain family. Intel does it best, under its ark.intel.com (known as ARK) platform, however sometimes there are obscure CPUs that do not make the official list due to partnerships or being geo-specific. The only way we end up knowing these obscure CPUs exist is because someone has ended up with the processor in their system and run diagnostic tests. Intel calls these processors ‘off-roadmap’ CPUs, and while it only provides information on them through ARK if you know the exact processor number already. Scouring the various resources available online to draw up that picture proved one thing: no list is complete. I doubt the one I have is complete either.

For example, most users believe that the last AMD FX processor that was made by AMD was the massive 220W FX-9590 for the AM3 platform. This is not the case.

AMD released two FX CPUs on FM2+, and these were only sold in HP pre-built systems. The two CPUs are the FX-770K and the FX-670K. Typically FX processors are known for being only on the AM3+ platform on the desktop, however AMD and HP struck a deal to give the premium FX name to these other CPUs and they were never launched at retail – in order to get these we found a seller on eBay that had pulled them out of old systems.

In some lists we found online, it was very easy to get mixed up because some companies have not kept their naming consistent. Take the strange case of the Athlon X4 750. Despite the name not having a suffix, is classified as a newer family to the Athlon X4 750K. The X4 750 being Piledriver based and the X4 750K which is Steamroller based.

Then there are region specific CPUs, like the FX-8330, which was only released in China. 

This is the current standing of the 'Intel Consumer' Core i7 and Core i5 processors up to Coffee Lake. Ones marked in yellow are ones that I have immediately available, ready for testing, and ones marked in red are still to-be-obtained. The common thread is that Intel has supplied all the Core i7-K processors for most generations, and the i5-K processors for some of them. The big blocks of yellow for Kaby Lake and Skylake were also sourced from Intel. The other singular dotted processors are either ones that I have purchased personally from my own stash, or ones that we have obtained via partners, such as the S/T processors when we covered some low-power hardware a few years ago. Needless to say, there are plenty of gaps, especially on the latest (and unannounced processors), but also going further back, before I was in charge of the CPU reviews.

Some of the feedback we have had with this project is that the database technically does not need every CPU that ever existed to be relevant, and even then, for some CPUs if we reduce the frequency multiplier, it will perform the same as a processor we do not have. While for some CPUs that is true, it has to be as long as the testing does not fall foul of the power states, the turbo states, the points at which turbo frequencies are enabled and the appropriate frequency/voltage curve binning (and if the cache sizes line up). While this can be the case, it is often on a case-by-case basis. However for the scope of this project, and for this project to be authentic in the data it is going to give, one of the rules I am imposing is that the data has to come from testing with the CPU on hand - no synthetic numbers from 'simulated' processors. 

Rule: No Synthetic Numbers from Simulated Processors

I mentioned that sourcing is one of the most difficult parts of this project, and the obvious answer to get hardware is to go direct to the manufacturer and request it: both manufacturers end up being big parts of this project regardless of their active participation, but the best scenario is that they should be the hardware source.

As the four areas above (AMD/Intel, Consumer/Enterprise) are for lack of a better description different companies, the press contact points for the consumer and enterprise sides of each company are different. As a result, we have different relationships with each of the four, and one of the interesting barriers to sampling is rebuilding relations when long-term contacts leave. Sometimes this happens for the better (sampling improves), or for the worse (a severe reluctance to offer anything).

Unfortunately sometimes there a wall - business unit policies for sampling often mean only one CPU here or there can be offered due to what’s available for media distribution, or if the company, the press contact, or the product manager does not see any value to the business in sampling a component (such as an Intel Pentium or an AMD A9), then it is unlikely we would get that sample from them. Part of that relationship with these companies is demonstrating the value of this data.

Another aspect is not actually having any samples - these are PR teams, not infinitely packed stock rooms. So if the team we are in contact with does not have access to certain parts that we request, such as consumer-grade parts that were built specifically for certain OEMs that are not under the ‘consumer’ PR team’s remit, or even some of the low priority parts in a stack, they can't loan them to us. It sounds somewhat odd that a big company like Intel or AMD wouldn't have access to a part that I'm looking for, but take those HP-only FX CPUs I mentioned earlier – despite it being a consumer grade CPU, because it ended up being a B2B transaction to supply these parts, it would have never passed the hands of the PR team, and any deal with the OEM may have put reviews of the hardware solely at the discretion of the OEM. Or the region-only parts, then only the PR team in that region will have access to them. (I eventually picked up those parts on my own dime on eBay, but this isn’t always possible.)

Nonetheless, we have approached as many people internally at both companies, as well as some OEMs and resellers, with our CPU Overload project idea. Both of the consumer arms of Intel and AMD have already provided a good first-round bounty of the latest hardware, and in most cases complete stacks of the newest generations. The enterprise hardware is a little tricky to get hold of. But many thanks to our Intel and AMD contacts that are already on-board with CPU Overload, as we try to work closer with the other units.

One thing to mention is that the newer the processor, the easier it is to get direct from the manufacturer. Typically these parts are already within their sampling quotas. However, if I go and ask for a Sandy Bridge Core i3-2125 from 2011, a sample to share is unlikely to be at their fingertips - there might be one in the drawer in a lab somewhere, but that is never a guarantee. This is where the project will have to look to private sales, forums, and online auction sites to play a role as we move further into the past. Depending on how the project goes, we may reach out to our readers (either in a project update, or on my twitter @IanCutress) for certain parts to complete the stacks. This has already worked for at least three hard-to-find CPUs, such as the HP FX CPUs (the FX-770K and FX-670K), and the Athlon X4 750 (not 750K), which we picked up from eBay and China respectively. 

For the initial few months of the project, we have around 200 CPUs to begin. This breaks down into the following:

CPU Overload Project Status
  CPUs on Hand Key Notes
Intel Consumer 138 / 406 29 / 46 : HEDT
72 / 241 : Core
37 / 119 : Pentium/Celeron
AMD Consumer 137 / 366

Includes Pro
42 / 105 : AM4 and TR
43 / 108 : FM2+/FM1/AM1
52 / 153 : AM3/3+
Intel Enterprise
Xeon E and
Xeon W
27 / 155 75% of E3-1200 v5
75% of E3-1200 v4
36% of E3-1200 v3
AMD EPYC 11 / 40 Known Socketed EPYC
Lots of unknown in Cloud
Others Opteron 6000: 2 / 121
Xeon-SP 1P
LGA 1366
Total (Phase 1) 313 / 967
Total 1088+

For the first phase, we are almost at a good level, having 33.7% of the processors needed. However, the models we do have a fairly localized in the Skylake/Kaby Lake-S sets, Intel's HEDT range, and some of AMD's stack. There is still a good number of interesting segments missing in what we have to hand.

The K10, LGA1366 Xeons and the older Opterons are part of the secondary scope of this project. Some of them are easy to obtain with bottomless pockets and a trip to eBay, and others require more research. There is a potential 'Phase 1.5', if we were to go after all of the Xeon E5-1600 and E5-2600 processors as well. Then it becomes an issue of tackling single socket vs dual socket systems, as well as suitable NUMA software.

So out of the two main issues with a project of this size, sourcing and benchmark longevity, we're trying to tackle both with one go - retest everything with a new benchmark suite on with the latest stable OS. The only factor left is time - retesting all these CPUs doesn't happen overnight. The key numbers to begin with testing however will be the headline Intel processors back to Sandy Bridge, and the AMD parts back to FX.

Launching the #CPUOverload Project Benchmark Automation
Comments Locked


View All Comments

  • Smell This - Monday, July 20, 2020 - link

    ;- )
  • Oxford Guy - Monday, July 20, 2020 - link

    "If there’s a CPU, old or new, you want to see tested, then please drop a comment below."

    • i7-3820. This one is especially interesting because it had roughly the same number of transistors as Piledriver on roughly the same node (Intel 32nm vs. GF 32 nm).

    • 5775C

    • 5675C (which outperformed and matched the 5775C in some games due to thermal throttling)

    • 5775C with TDP bypassed or increased if this is possible, to avoid the aforementioned throttling

    • I would really really like you to add Deserts of Kharak to your games test suite. It is the only game I know of that showed Piledriver beating Intel's chips. That unusual performance suggests that it was possible to get more performance out of Piledriver if developers targeted that CPU for optimization and/or the game's engine somehow simply suited it particularly.

    • 8320E or 8370E at 4.7 GHz (non-turbo) with 2133 CAS 9-11-10 RAM, the most optimal Piledriver setup. The 9590 was not the most performant of the FX line, likely because of the turbo. A straight overclock coupled with tuned RAM (not 1600 CAS 10 nonsense) makes a difference. 4.7 GHz is a realistic speed achievable by a large AIO or small loop. If you want air cooling only then drop to 4.5 Ghz but keep the fast RAM. The point of testing this is to see what people were able to get in the real world from the AMD alternative for all the years they had to wait for Zen. Since we were stuck with Piledriver as the most performant Intel alternative for so so many years it's worth including for historical context. The "E" models don't have to be used but their lower leakage makes higher clocks less stressful on cooling than a 9000 series. 4.7 GHz was obtainable on a cheap motherboard like the Gigabyte UD3P, with strong airflow to the VRM sink.

    • VIA's highest-performance model. If it won't work with Windows 10 then run the tests on it with 8.1. The thing is, though... VIA released an update fairly recently that should make it compatible with Windows 10. I saw Youtube footage of it gaming, in fact, with a discrete card. It really would be a refreshing thing to see VIA included, even though it's such a bit player.

    • Lynnfield at 3 GHz.

    • i7-9700K, of course.
  • Oxford Guy - Monday, July 20, 2020 - link

    Regarding Deserts of Kharak... It may be that it took advantage of the extra cores. That would make it noteworthy also as an early example of a game that scaled to 8 threads.
  • Oxford Guy - Monday, July 20, 2020 - link

    Also, the Chinese X86 CPU, the one based on Zen 1, would be very nice to have included.
  • Oxford Guy - Monday, July 20, 2020 - link

    VIA CPUs tested with games as recently as 2019 (there was another video of the quad core but I didn't find it today with a quick search):


    The Zhaoxin KaiXian KX-U6880A would be nice to see included, not just the Chinese Zen 1 derivative.
  • Oxford Guy - Monday, July 20, 2020 - link

    "due to thermal throttling"

    TDP throttling, to be more accurate. I suppose it could throttle due to current demand rather than temp.
  • axer1234 - Monday, July 20, 2020 - link

    honestly i would love to know how different generation processor perform today especially higher core count. like prescott series pentium 4 athlon II phenomX6 core2 duo core2quad nehlam sandy bridge bulldozer etc with todays generation work loads and offering

    in many scenario like word excel ppt photoshop it all works very well still in many offices
    its just the new generation of application slowing it down for almost the same work etc
  • herefortheflops - Monday, July 20, 2020 - link

    @Dr. Cutress.,

    As someone that has been dealing with similar or greater product testing challenges and configuration complexity for the better part of a decade or so, I would like to commend you for your ambitious goals and efforts so far. Additionally, I could be of high value to your effort if you are willing to discuss. I have reviewed in-depth the bench database (as well as competing websites) and I have come to the conclusion the Anandtech bench data is of very limited usefulness at present--and would require some significant changes to the data being collected/reported and the way things have been done to this point. I do understand where the industry is going, the questions the readers are going to be asking of the data, and the major comparisons that will be attempted with the data. Unfortunately, much of your effort may easily become irrelevant unless you proceed with some extreme caution to provide data with more utility. I also know methods to accomplish the desired result while reducing the size and cost of the task at hand. Reply by e-mail if you are interested in talking.

    -A potential contributor to your effort.
  • Bensam123 - Tuesday, July 21, 2020 - link

    Despite how impressive this is, one thing that hasn't been tackled is still multiplayer performance and it vastly changes recommendations for CPUs (doesn't effect GPUs as much).

    It goes from recommending a 6 core chip hands down to trying to make a case for 4 core chips still in this day and age. I own a 3900x and 2800 and I can tell you hands down Modern Warfare will gobble 70% of that 12 core chip, sometimes a bit more, that's equivalent to maxing out a 8 core of the same series. That vastly changes recommendations and data points. It's not just Modern Warfare. Overwatch, Black Ops 3(same engine as MW), and recently Hyper Scape will will make use of those extra cores. I have a widget to monitor CPU utilization in the background and I can check Task Manager. If I had a better video card I'm positive it would've sucked down even more of those 12 cores (my GPU is running at 100% load according to MSI AB).

    This is a huge deal and while I understand, I get it, it's hard to reliably reproduce the same results in a multiplayer environment because it changes so much and generally seen as taboo from a hardware benchmarking standpoint, it is vastly different then singleplayer workloads to the point at which it requires completely different recommendations. Given how many people are making expensive hardware choices specifically because they play multiplayer games, I would even say most tech reviews in this day and age are irrelevant for CPU recommendations outside of the casual single player gamer. GPU recommendations are still very much on par, CPU is not remotely.

    I talk about this frequently on my stream and why I still recommended the 1600 AF even when it was sitting at $105-125, it's a steal if you play multiplayer games, while most people that either read benchmarking websites or run benchmarks themselves will start making a case for a 4c Intel. 6 core is a must at the very least in this day and age.

    Anandtech it's time to tread new ground and go into the uncharted area. Singleplayer results and multiplayer results are too different, you can't keep spinning the wheel and expect things to remain the same. You can verify this yourself just by running task manager in the background while playing one of the games I mentioned at the lowest settings regardless of being able to repeat those results exactly you'll see it's definitely a multi-core landscape for newer multiplayer games.

    Not even touched on in the article.
  • Bensam123 - Tuesday, July 21, 2020 - link

    70%, I have SMT off for clarification.

Log in

Don't have an account? Sign up now