The popularity of Intel's HD Graphics amongst HTPC enthusiasts and the success of the AMD APUs seem to indicate that the days of the discrete HTPC GPU are numbered. However, for those with legacy systems, a discrete HTPC GPU will probably be the only way to enable hardware accelerated HD playback. In the meanwhile, discrete HTPC GPUs also aim to offer more video post processing capabilities.

In this context, both AMD and NVIDIA have been serving the market with their low end GPUs. These GPUs are preferable for HTPC scenarios due to their low power consumption and ability to be passively cooled. Today, we will be taking a look at four GPUs for which passively cooled solutions exist in the market. From AMD's side, we have the 6450 and 6570, while the GT 430 and GT 520 make up the numbers from the NVIDIA side.

Gaming benchmarks are not of much interest to the HTPC user interested in a passively cooled solution. Instead of focusing on that aspect, we will evaluate factors relevant to the AV experience. After taking a look at the paper specifications of the candidates, we will describe our evaluation testbed.

We will start off the hands-on evaluation with a presentation of the HQV benchmarks. This provides the first differentiating factor.

While almost all cards (including the integrated graphics on CPUs) are able to playback HD videos with some sort of acceleration, videophiles are more demanding. They want to customize the display refresh rate to match the source frame rate of the video being played. Casual HTPC users may not recognize the subtle issues created by mismatched refresh rates. However, improper deinterlacing may lead to highly noticeable issues. We will devote a couple of sections to see how the cards handle custom refresh rates and fare at deinterlacing.

After this, we will proceed to identify a benchmark for evaluating HTPC GPUs. This benchmark gives us an idea of how fast the GPUs can decode the supported codecs, and whether faster decoding implies more time for post processing. We will see one of the cards having insane decoding speeds, and try to find out why.

Over the last few months, we have also been keeping track of some exciting open source software in the HTPC area. Aiming to simplify the player setup and also take advantage of as many features of your GPU as possible, we believe these are very close to being ready for prime time. We will have a couple of sections covering the setup and usage of these tools.

Without further ado, let us go forward and take a look at the contenders.

The Contenders
Comments Locked

70 Comments

View All Comments

  • jwilliams4200 - Monday, June 13, 2011 - link

    All the numbers add up correctly now. Thanks for monitoring the comments and fixing the errors!
  • Samus - Monday, June 13, 2011 - link

    Honestly, my Geforce 210 has been chillin' in my HTPC for 2+ years, and works perfectly :)
  • josephclemente - Monday, June 13, 2011 - link

    If I am running a Sandy Bridge system with Intel HD Graphics 3000, do these cards have any benefit over integrated graphics? What is Anandtech's HQV Benchmark score?

    I tried searching for scores, but people say this is subjective and one reviewer may differ from another. One site says 196 and another in the low 100's. What does this reviewer say?
  • ganeshts - Monday, June 13, 2011 - link

    Give me a couple of weeks. I will be getting a test system soon with the HD 3000, and I will do detailed HQV benchmarking in that review too.
  • dmsher99@gmail.com - Tuesday, June 14, 2011 - link

    I recently built a HTPC with a core i5-2500k on a ASUS P8H67 EVO with a Ceton InfiniTV cable card. Note that the Intel driver is fundamentally flawed and will destroy a system if patched. See the Intel communities thread 20439 for more details.

    Besides causing BSOD over HDMI output when patched, the stable versions have their own sets of bugs including a memory bleed when watching some premium content on HD channels that crashed WMC. Intel appears to have 1 part time developer working on this problem but every test river he puts out breaks more than it fixes. Watching the same, content with a system running a NVIDIA GPU and the memory bleed goes away.

    In my opinion, second gen SB chips is just not ready for prime time in a fully loaded HTPC.
  • jwilliams4200 - Monday, June 13, 2011 - link

    "The first shot shows the appearance of the video without denoising turned on. The second shot shows the performance with denoising turned off. "

    Heads I win, tails you lose!
  • ganeshts - Monday, June 13, 2011 - link

    Again, sorry for the slip-up, and thanks for bringing it to our notice. Fixed it. Hopefully, the gallery pictures cleared up the confusion (particularly the Noise Reduction entry in the NVIDIA Control Panel)
  • stmok - Monday, June 13, 2011 - link

    Looking through various driver release README files, it appears the mobile Nvidia Quadro NVS 4200M (PCI Device ID: 0x1056) also has this feature set.

    The first stable Linux driver (x86) to introduce support for Feature Set D is 270.41.03 release.
    => ftp://download.nvidia.com/XFree86/Linux-x86/270.41...

    It shows only the Geforce GT 520 and Quadro NVS 4200M support Feature Set D.

    The most recent one confirms that they are still the only models to support it.
    => ftp://download.nvidia.com/XFree86/Linux-x86/275.09...
  • ganeshts - Monday, June 13, 2011 - link

    Thanks for bringing it to our notice. When that page was being written (around 2 weeks back), the README indicated that the GT 520 was the only GPU supporting Feature Set D. We will let the article stand as-is, and I am sure readers perusing the comments will become aware of this new GPU.
  • havoti97 - Monday, June 13, 2011 - link

    So basically the app store's purpose is to attract submissions of ideas for features of their next OS, uncompensated of course. All the other crap/fart apps not worthy are approved and people make pennies of those.

Log in

Don't have an account? Sign up now