When Intel launched its 12th Generation Core family of processors late last year, it was only a small set of overclockable parts for desktops that came to market. Featuring Intel’s new hybrid core design, the hardware proved competitive and cost effective, making it a very interesting time to be a consumer. However, the main battle for volume sales is typically in the mid-range and notebook segments which power millions of devices, and Intel is launching these processors today. These include the 35 W and 65 W desktop processors, new desktop coolers, and a handful of 45W+ laptop offerings for the creator and gaming markets.

New Desktop CPUs: Hardware for the Masses

While all the glitz and the glamour goes to the high-profile overclockable processors in any given generation, the bulk of Intel’s sales actually comes from the standard, run-of-the-mill hardware that gets put into the majority of commercial and pre-built hardware. To that end, Intel usually releases anywhere from 10 to 50+ new desktop processors to fill in the markets where needed. These processors usually come from anything up to four base physical designs, and parts of those chips are disabled depending on yield or market demand and sold accordingly.

For Alder Lake, Intel is launching 22 new desktop processors, from $42 dual core Celerons at 35W all the way up to $489 Core i9-12900 parts. The full stack, including the overclockable processors, now looks like this:

Intel 12th Gen Core, Alder Lake
AnandTech Cores
P+E
E-Core
Base
E-Core
Turbo
P-Core
Base
P-Core
Turbo
L3
MB
IGP Base
W
Turbo
W
Price
$1ku
Core i9
i9-12900K 8+8 2400 3900 3200 5200 30 770 125 241 $589
i9-12900KF 8+8 2400 3900 3200 5200 30 - 125 241 $564
i9-12900 8+8 1800 3800 2400 5100 30 770 65 202 $489
i9-12900F 8+8 1800 3800 2400 5100 30 - 65 202 $464
i9-12900T 8+8 1000 3600 1400 4900 30 770 35 106 $489
Core i7
i7-12700K 8+4 2700 3800 3600 5000 25 770 125 190 $409
i7-12700KF 8+4 2700 3800 3600 5000 25 - 125 190 $384
i7-12700 8+4 1600 3600 2100 4900 25 770 65 180 $339
i7-12700F 8+4 1600 3600 2100 4900 25 - 65 180 $314
i7-12700T 8+4 1000 3400 1400 4700 25 770 35 99 $339
Core i5
i5-12600K 6+4 2800 3600 3700 4900 20 770 125 150 $289
i5-12600KF 6+4 2800 3600 3700 4900 20 - 125 150 $264
i5-12600 6+0 - - 3300 4800 18 770 65 117 $223
i5-12600T 6+0 - - 2100 4600 18 770 35 74 $223
i5-12500 6+0 - - 3000 4600 18 770 65 117 $202
i5-12500T 6+0 - - 2000 4400 18 770 35 74 $202
i5-12400 6+0 - - 2500 4400 18 730 65 117 $192
i5-12400F 6+0 - - 2500 4400 18 - 65 117 $167
i5-12400T 6+0 - - 1800 4200 18 730 35 74 $192
Core i3
i3-12300 4+0 - - 3500 4400 12 730 60 89 $143
i3-12300T 4+0 - - 2300 4200 12 730 35 69 $143
i3-12100 4+0 - - 3300 4300 12 730 60 89 $122
i3-12100F 4+0 - - 3300 4300 12 - 58 89 $97
i3-12100T 4+0 - - 2200 4100 12 730 35 69 $122
Pentium + Celeron
G7400 2+0 - - 3700 - 6 710 46 - $64
G7400T 2+0 - - 3100 - 6 710 35 - $64
G6900 2+0 - - 3400 - 4 710 46 - $42
G6900T 2+0 - - 2800 - 4 710 35 - $42

Split down, here’s what all the Core names mean:

  • Core i9: 8 Performance Cores + 8 Efficiency Cores
  • Core i7: 8 Performance Cores + 4 Efficiency Cores
  • Core i5: Either 6P+4E, or 6P only
  • Core i3: 4 Performance Cores only
  • Pentium: 2 Performance Cores only
  • Celeron: 2 Performance Cores only

Just putting Core i5 aside for a split second, what we have here is a scale of hardware that changes in performance cores, but only a select few have efficiency cores. This is because Intel is using two base physical designs for this hardware: either a large 8P+8E chip or a smaller 6P only chip. The smaller chip makes the economics of the lower core count processors work out better, but it does mean that one of the key features for Alder Lake, the hybrid CPU, will be limited to the high-end hardware only.

The Core i5 hardware is a bit odd in the middle, as the i5-12600K/KF processors use the large chip, while everything else in the Core i5 family uses the smaller chip with no efficiency cores. As a result we see some Core i5 parts with 20 MB of L3 cache, and some only with 18 MB. It’s going to be interesting to see how much those efficiency cores and extra cache brings to the table when it comes to performance and performance per dollar.

As with previous processor launches from Intel, anything with an F means that it does not have integrated graphics, and anything with a T means a 35 W base power. Because Intel readjusted how it presents turbo power for this generation (something we’re really glad Intel did), we can see that the top Core i9-12900T has a base power of 35 W and a turbo power of 106 W. In previous generations, that second number was obfuscated in technical documents, so it’s good to see it out in the open.

All the processors here support DDR5-4800 and DDR4-3200 memory, along with 16 PCIe 5.0 lanes and 4 PCIe 4.0 lanes. In order to provide a cost-effective platform for these processors, Intel is also launching new motherboard chipsets.


Updated 1/10/22

To date Intel launched the Z690 motherboards, but today we also get H670, B660, and H610 offerings. As with previous generations, these budget designs start cutting away at what is offered, all the way down to H610 which only supports one memory channel, PCIe 3.0 only, only four SATA ports, and no USB 3.2 Gen 2x2 ports.

Update: Intel has adjusted the slide - H610 supports two memory channels, but only one DIMM per channel.

It’s worth noting that H670 and B660 differ in two key aspects that some users will care about. B660 is the lower grade, with half the CPU-to-chipset bandwidth, and only four SATA ports. For users looking at more than a single PCIe M.2 storage drive, or multiple SATA drives, there may be an instance where the chipset link becomes a bottleneck, so watch out for that. Normally the B-series chipset is cheaper for motherboard manufacturers to use, so it will be interesting to see how the vendors split their offerings.

Alongside CPUs and motherboards, Intel is refreshing its stock CPU coolers for the first time in a long time. It has been hard not to notice how much success AMD has had with its in-box coolers, offering a $30-$50 add-on for free that is actually half decent - Intel has somewhat neglected this. But that changes today with the new Intel Laminar coolers. These coolers will come with all 65 W base power boxed Alder Lake processors.

The Core i9 parts, which have turbo powers up to 202 W, will get the Laminar RH1. This comes with RGB lighting, a larger-than-standard copper core, and ‘near silent’ performance. The connectors onto the motherboard involve screws and a backplate.

The Core i3, i5, and i7 parts, which have turbo powers up to 180 W, will get the RM1 coolers. These are more standard Intel size in height, uses the more traditional Intel push-pin arrangement. No RGB here, but a push for ‘quiet performance’. Intel doesn’t state if there is copper or an all-aluminium design.

The Pentium and Celeron parts, which don’t have turbo and are listed at 46 W, get the RS1 cooler. It has simpler design, likely all-aluminium, but a new fin arrangement with that new Intel logo. There’s no pretense here about RGB or noise, given it’s built for the cheap end of the market.

These new Alder Lake processors are expected to be available at retail this week, along with the new motherboards and coolers.

Notebooks for Alder Lake: H-Series

On the mobile side of Intel’s portfolio, the company splits its offering into different elements based on the market: U-series goes up to 15 W for modern thin and light designs, P-series up to 28 W enables something faster and more premium, and the H-series starting at 45W go for combined CPU+discrete GPU gaming and workstation designs. Today Intel is launching the H-series part of the portfolio, built on a base 6P+8E silicon design.

With Alder Lake-H, Intel is reintroducing its Hybrid CPU design to the laptop market. This means Intel’s latest high performance Golden Cove P-cores and high efficiency Gracemont E-cores, all built on the Intel 7 manufacturing process. Inside the H-series CPU includes the cores, a full 96 EUs of Intel Xe-LP graphics, support for up to four Thunderbolt 4 ports, memory support for DDR5, LPDDR5, DDR4, and LPDDR4X, and an array of PCIe, USB, and wireless connectivity options. Intel’s big win here for this generation is combining both the CPU and the chipset onto one package for its 45 W processors, rather than relying on a mobile chipset.

On the processor offerings, Intel has 8 models to showcase.

Intel 12th Gen Core, Alder Lake-H
AnandTech Cores
P+E
E-Core
Base
E-Core
Turbo
P-Core
Base
P-Core
Turbo
Base
W
Turbo
W
i9-12900HK 6+8 1800 3800 2500 5000 45 115
i9-12900H 6+8 1800 3800 2500 5000 45 115
i7-12800H 6+8 1800 3700 2400 4800 45 115
i7-12700H 6+8 1700 3500 2300 4700 45 115
i7-12650H 6+4 1700 3500 2300 4700 45 115
i5-12600H 4+8 2000 3300 2700 4500 45 95
i5-12500H 4+8 1800 3300 2500 4500 45 95
i5-12450H 4+4 1500 3300 2000 4400 45 95

At the top is the Core i9-12900HK, the K meaning that the chip is overclockable. Actually the naming for this generation is easy enough to follow: Core i9 and Core i7 have 6P cores, while the Core i5 has 4P cores. Everything has 8E cores, unless the fourth and fifth digit is a 50, e.g. i7-12650H. You may think I’m joking when I say this is easier to understand than previous generations, but trust me when I say it is. Not perfect, but easier.

Intel says it has over 100 designs using Alder-H in the pipeline from all of its major partners, all the way from 35W portable up to 65W+ halo enthusiast. On the performance side at that high-end, Intel is claiming up to +28% better gaming performance at 1080p High compared to the last generation and the competition, as well as anything up to +44% on content creation. This includes comparisons against the M1 Max.

We’re expecting to see a large number of these notebooks be announced this week, so keep your eyes peeled for that. It’s a little odd to not see Intel launch Alder-P or Alder-U, especially as it looks like Alder-U will be a 2P+8E configuration, whereas we can get Zen-U systems with 8P cores. That’ll be an interesting comparsion.

Comments Locked

101 Comments

View All Comments

  • Mike Bruzzone - Wednesday, January 12, 2022 - link

    Its a rough business.mb
  • Oxford Guy - Friday, January 14, 2022 - link

    It is believed in some circles that Fairchild hired an engineer, David Chung (now deceased), to steal a CPU from Olympia Werke. That CPU became the Fairchild F8 and there was a lawsuit. Unfortunately for Olympia Werke, if it had indeed been stolen, the lawsuit took too long to match market conditions change. So, if it was stolen, Fairchild got away with getting a profit from the theft.

    His colleague for the VideoBrain home computer project, who had worked at Intel, claimed he had invented the CPU (Chung, not the colleague), which is why it was chosen for the VideoBrain rather than an Intel part. This colleague, whose name escapes me at the moment, said hindsight makes it clear the machine should have had an Intel CPU.

    My opinion on that is that it wasn’t the CPU that doomed that machine. It was having only 1K of RAM, a totally non-standard keyboard, and its reliance upon the APL/S language. It also had no floppy drive support. Distribution was also inadequate. Trying to sell it via Macy’s was a bad move. It should have been carried and pushed by electronics stores. Regardless of everything else, 1K of RAM wasn’t enough for anything.
  • tygrus - Friday, January 14, 2022 - link

    I thank Mike for the info. The info he mentions is not new speculation, it appears to be based on facts previously discussed by him. https://youtu.be/VL1RjwVAnzY
  • Mike Bruzzone - Friday, January 14, 2022 - link

    Tygrus, you're welcome. I've conferred with Tom from MLID on an update broadcast sought by members of Seeking Alpha investor chat room but nothing scheduled yet. mb
  • TheinsanegamerN - Wednesday, January 5, 2022 - link

    Newsflash: AMD has never been your friend, nobody but the biggest corprate suckers believed otherwise.

    See, some of us are old enough to remember the FX-62 selling for $1000, or $300 more then the 100 mhz slower FX-60.
  • GeoffreyA - Wednesday, January 5, 2022 - link

    As soon as the Athlon 64 took the lead, prices went up.
  • TheinsanegamerN - Friday, January 14, 2022 - link

    Then AMD took all the money they made and sunk it not into CPU improvements but buying ATi and building globalfoundries, which is credited with saving them but is also directly responsible for AMD being put into such a situation in the first place.
  • GeoffreyA - Friday, January 14, 2022 - link

    Agreed. I think it was a matter of resting on laurels, too, and underestimating Intel. K10 was only a mild improvement over the Athlon 64, certainly not enough to tackle Conroe, which they likely never expected. Still, I expect if AMD had kept working on K10, they'd have drawn even with Intel; but desperation, or foolish inspiration, took them down the dark, disastrous path of Bulldozer.
  • Qasar - Friday, January 14, 2022 - link

    TheinsanegamerN, looks like you are also forgetting about the BS intel was doing with the back door deals, threats and the like that prevented amd from doing better with the A64 then they did.
  • Oxford Guy - Friday, January 7, 2022 - link

    You forgot the astroturfers — people using the ‘team green, team red’ nonsense to try to turn everything into tribal warfare. ‘Fanboyism’ has been a strong component of the enthusiast gaming/overclocking scene for a long time, even though plenty of it is due to sundry astroturfers.

Log in

Don't have an account? Sign up now