Instruction Sets: Alder Lake Dumps AVX-512 in a BIG Way

One of the big questions we should address here is how the P-cores and E-cores have been adapted to work inside a hybrid design. One of the critical aspects in a hybrid design is if both cores support different levels of instructions. It is possible to build a processor with an unbalanced instruction support, however that requires hardware to trap unsupported instructions and do core migration mid-execution. The simple way to get around this is to ensure that both types of cores have the same level of instruction support. This is what Intel has done in Alder Lake.

In order to get to this point, Intel had to cut down some of the features of its P-core, and improve some features on the E-core. The biggest thing that gets the cut is that Intel is losing AVX-512 support inside Alder Lake. When we say losing support, we mean that the AVX-512 is going to be physically fused off, so even if you ran the processor with the E-cores disabled at boot time, AVX-512 is still disabled.

Intel’s journey with AVX-512 has been long and fragmented. Some workloads can be vectorised – multiple bits of consecutive data all require the same operation, so you can pack them into a single register and perform it all at once with a single instruction. Designed as its third generation of vector instructions (AVX is 128-bit, AVX2 is 256-bit, AVX512 is 512-bit), AVX-512 was initially found on server processors, then mobile, and we found it in the previous version of desktop processors. At the time, Intel stated that by enabling AVX-512 on its processor line from top to bottom, it would encourage greater adoption, and they were leaning hard into this missive.

But that all changes with Alder Lake. Both desktop processors and mobile processors will now have AVX-512 disabled in all scenarios. But the silicon will still be physically present in the core, only because Intel uses the same core in its next generation server processors called Sapphire Rapids. One could argue that if the AVX-512 unit was removed from the desktop cores that they would be a lot smaller, however Intel has disagreed on this point in previous launches. What it means is that for the consumer parts we have some extra dark silicon in the design, which ultimately might help thermals, or absorb defects.

But it does mean that AVX-512 is probably dead for consumers.

Intel isn’t even supporting AVX-512 with a dual-issue AVX2 mode over multiple operations - it simply won’t work on Alder Lake. If AMD’s Zen 4 processors plan to support some form of AVX-512 as has been theorized, even as dual-issue AVX2 operations, we might be in some dystopian processor environment where AMD is the only consumer processor on the market to support AVX-512.

On the E-core side, Gracemont will be Intel’s first Atom processor to support AVX2. In testing with the previous generation Tremont Atom core, at 2.9 GHz it performed similarly to a Haswell 2.9 GHz Celeron processor, i.e. identical in non-AVX2 situations. By adding AVX2, plus fundamental performance increases, we’re told to expect ‘Skylake-like performance’ from the new E-cores. Intel also stated that both the P-core and E-core will be at ‘Haswell-level’ AVX2 support.

By enabling AVX2  on the E-cores, Intel is also integrating support for VNNI instructions for neural network calculations. In the past VNNI (and VNNI2) were built for AVX-512, however this time around Intel has done a version of AVX2-VNNI for both the P-core and E-core designs in Alder Lake. So while AVX-512 might be dead here, at least some of those AI acceleration features are carrying over, albeit in AVX2 form.

For the data center versions of these big cores, Intel does have AVX-512 support and new features for matrix extensions, which we will cover in that section.

Gracemont Microarchitecture (E-Core) Examined Conclusions: Through The Cores and The Atoms
Comments Locked

223 Comments

View All Comments

  • Unashamed_unoriginal_username_x86 - Thursday, August 19, 2021 - link

    When you say "similar in magnitude to what skylake did" on the Golden Cove page, are you sure you don't mean something like Sandy Bridge? I vaguely remember Skylake being a pretty nominal improvement on the order of 10-15%
  • mode_13h - Thursday, August 19, 2021 - link

    > I vaguely remember Skylake being a pretty nominal improvement on the order of 10-15%

    That would NOT be a nominal improvement! Fortunately, the real number isn't hard to find:

    https://www.anandtech.com/show/9483/intel-skylake-...

    "In our IPC testing, ... we saw a 5.7% increase in performance over Haswell. That value masks the fact that between Haswell and Skylake, we have Broadwell, marking a 5.7% increase for a two generation gap."

    "In our discrete gaming benchmarks, at 3GHz Skylake actually performs worse than Haswell at an equivalent clockspeed, giving up an average of 1.3% performance."
  • Wereweeb - Thursday, August 19, 2021 - link

    Funny how Ryzen made people used to thinking in terms of generational improvements as "10-15%" again. Thankfully, EUV and GAAFETs will make sure the next few generations keep advancing at that pace.
  • mode_13h - Thursday, August 19, 2021 - link

    > are you sure you don't mean something like Sandy Bridge?

    Exactly. The timeframe of "a decade" and the magnitude of the changes they're describing lines up with Sandybridge.
  • Spunjji - Monday, August 23, 2021 - link

    Definitely referring to Sandy Bridge, as that was a 2011 architecture.
  • zzzxtreme - Thursday, August 19, 2021 - link

    been waiting 10 years for this, assuming this is a breakthrough x86 cpu
  • cheshirster - Thursday, August 19, 2021 - link

    Not this time.
  • shabby - Thursday, August 19, 2021 - link

    Finally we'll see how good intels 10nm is...
  • AdrianBc - Thursday, August 19, 2021 - link

    "E-core will be at ‘Haswell-level’ AVX2 support" seems to be contradicted by the slides from the Intel presentation, which imply that Gracemont does not have FMA, but only separate FADD and FMUL.

    If the Intel slides are correct Gracemont cannot support the complete Haswell instruction set.

    Maybe Gracemont supports only the 256-bit integer instructions added by Haswell over Sandy Bridge and it might also not support the BMI Haswell instructions.

    Also weird is that the original Intel presentation does not contain the terms AVX or AVX2, but only some vague "support for Advanced Vector Instructions".

    So, unless Intel has purposedly confused the presentations for now, it looks like the Gracemont and Golden Cove do not have compatible instructions sets, even with AVX-512 disabled.

    If that is true, then disabling AVX-512 must have only one reason, decreasing the manufacturing cost for Alder Lake, by using all the defect chips and reserving the good ones for Sapphire Rapids.
  • AdrianBc - Thursday, August 19, 2021 - link

    After writing the comment above, I have looked again at the Gracemont presentation and only now I have noticed that in the same slide that does not show any FMA unit it is written that it indeed supports the FMA instructions.

    I do not know why 2 FADD + 2 FMUL are shown instead of 2 FMA, like in the slide for Golden Cove.

    Because each FADD is on the same port with an FMUL, this means that Gracemont cannot function like AMD Zen, which can do an extra separate FADD besides an FMUL, when the full FMA is not needed. If the FMA and the FMUL cannot be executed simultaneously, then they should have drawn it as just an FMA unit, like in the Golden Cove slide.

    In any case even if Gracemont would be compatible with Haswell + the SHA extension, that still cannot make it instruction compatible with Golden Cove, because there are important additional instructions introduced in Broadwell, Ice Lake and Tiger Lake.

Log in

Don't have an account? Sign up now