Hardware and Software Security Fixes

The Spectre and Meltdown vulnerabilities made quite a splash earlier this year, forcing makers of hardware and software to release updates in order to tackle them. There are several ways to fix the issues, including software, firmware, and hardware updates. Each generation of product is slowly implementing fixes, including some of the new 9th Generation processors.

At this point Intel has split the list down into 5/6 wide variants of different types of vulnerabilities. For all processors beyond mid-2018, here is what the fix table looks like:

Spectre and Meltdown on Intel
AnandTech SKX-R
3175X
CFL-R Cascade Lake Whiskey
Lake
Amber
Lake
Spectre Variant 1 Bounds Check Bypass OS/VMM OS/VMM OS/VMM OS/VMM OS/VMM
Spectre Variant 2 Branch Target Injection Firmware + OS Firmware + OS Hardware + OS Firmware + OS Firmware + OS
Meltdown Variant 3 Rogue Data Cache Load Firmware Hardware Hardware Hardware Firmware
Meltdown Variant 3a Rogue System Register Read Firmware Firmware Firmware Firmware Firmware
  Variant 4 Speculative Store Bypass Firmware + OS Firmware + OS Firmware + OS Firmware + OS Firmware + OS
  Variant 5 L1 Terminal Fault Firmware Hardware Hardware Hardware Firmware

The new 9th Generation processors, listed as CFL-R (Coffee Lake Refresh), has implemented hardware fixes for variant 3, Rogue Data Cache Load, and variant 5, L1 Terminal Fault.

Because the new chips have required new masks for manufacturing, Intel has been able to make these changes. The goal of moving the changes into hardware means that the hardware is always protected, regardless of OS or environment, and with the hope that any additional overhead created by a software fix can be lessened if done in hardware.

(S)TIM: Soldered Down Processors

With the desktop processors we use today, they are built from a silicon die (the smart bit), a package substrate (the green bit), a heatspreader (the silver bit), and a material that helps transfer heat from the silicon die to the heatspreader. The quality of the binding between the silicon die and the heatspreader using this thermal interface material is a key component in the processors ability to remove the heat generated from using it.

Traditionally there are two different types of thermal material: a heat conductive paste, or a bonded metal. Both have positives and negatives.

The heat conductive paste is a universal tool – it can be applied to practically any manufactured processor, and is able to deal with a wide range of changing conditions. Because metals expand under temperature, when a processor is used and gets hot, it expands – so does the heatspreader. The paste can easily deal with this. This allows paste-based processors to live longer and in more environments. Using a bonded metal typically reduces the level of thermal cycling possible, as the metal also expands and contracts in a non-fluid way. This might mean the processors has a rated lifespan of several years, rather than a dozen years. However, the bonded metal solution performs a lot, lot better – metal conducts heat better than the silicon-based pastes – but it is slightly more expensive (a dollar or two per unit, at most, when the materials and manufacturing are taken into account).

Thermal Interface
Intel Celeron Pentium Core i3 Core i5 Core i7
Core i9
HEDT
Sandy Bridge LGA1155 Paste Paste Paste Bonded Bonded Bonded
Ivy Bridge LGA1155 Paste Paste Paste Paste Paste Bonded
Haswell / DK LGA1150 Paste Paste Paste Paste Paste Bonded
Broadwell LGA1150 Paste Paste Paste Paste Paste Bonded
Skylake LGA1151 Paste Paste Paste Paste Paste Paste
Kaby Lake LGA1151 Paste Paste Paste Paste Paste -
Coffee Lake 1151 v2 Paste Paste Paste Paste Paste -
CFL-R 1151 v2 ? ? ? K = Bonded -
AMD
Zambezi AM3+ Bonded Carrizo AM4 Bonded
Vishera AM3+ Bonded Bristol R AM4 Bonded
Llano FM1 Paste Summit R AM4 Bonded
Trinity FM2 Paste Raven R AM4 Paste
Richland FM2 Paste Pinnacle AM4 Bonded
Kaveri FM2+ Paste / Bonded* TR TR4 Bonded
Carrizo FM2+ Paste TR2 TR4 Bonded
Kabini AM1 Paste      
*Some Kaveri Refresh were bonded

In our Ryzen APU delidding article, we went through the process of removing the heatspreader and conductive paste from a popular low cost product, and we showed that replacing that paste with a bonded liquid metal improved temperatures, overclocking, and performance in mid-range overclocks. If any company wants to make enthusiasts happy, using a bonded metal is the way to go.

For several years, Intel has always stated that they are there for enthusiasts. In the distant past, as the table above shows, Intel provided processors with a soldered bonded metal interface and was happy to do so. In recent times however, the whole product line was pushed into the heat conductive paste for a number of reasons.

As Intel was continually saying that they still cared about enthusiasts, a number of users were concerned that Intel was getting itself confused. Some believed that Intel had ‘enthusiasts’ and ‘overclockers’ in two distinct non-overlapping categories. It is what it is, but now Intel has returned to using applying STIM and wants to court overclockers again.

Intel has officially confirmed that new 9th generation processors will feature a layer of solder making up the TIM between the die and the IHS. The new processors with solder include the Core i9-9900K, the Core i7-9700K and Core i5-9600K.

As we’ll show in this review, the combination of STIM plus other features are of great assistance when pushing the new processors to the overclocking limits. Intel’s own overclocking team at the launch event hit 6.9 GHz temporarily using exotic sub-zero coolants such as liquid nitrogen.

Motherboards and the Z390 Chipset

One of the worst kept secrets this year has been Intel’s Z390 chipset. If you believe everything the motherboard manufacturers have told me, most of them had been ready for this release for several months, hence why seeing around 55 new motherboards hit the market this month and into next.

The Z390 chipset is an update to Z370, and both types of motherboards will support 8000-series and 9000-series processors (Z370 will need a BIOS update). The updates are similar to the updates seen with B360: native USB 3.1 10 Gbps ports, and integrated Wi-Fi on the chipset.

Intel Z390, Z370 and Z270 Chipset Comparison
Feature Z390 Z370 Z270
Max PCH PCIe 3.0 Lanes 24 24 24
Max USB 3.1 (Gen2/Gen1) 6/10 0/10 0/10
Total USB 14 14 14
Max SATA Ports 6 6 6
PCIe Config x16
x8/x8
x8/x4/x4
x16
x8/x8
x8/x4/x4
x16
x8/x8
x8/x4/x4
Memory Channels 2 2 2
Intel Optane Memory Support Y Y Y
Intel Rapid Storage Technology (RST) Y Y Y
Max Rapid Storage Technology Ports 3 3 3
Integrated 802.11ac WiFi MAC Y N N
Intel Smart Sound Y Y Y
Integrated SDXC (SDA 3.0) Support Y N N
DMI 3.0 3.0 3.0
Overclocking Support Y Y Y
Intel vPro N N N
Max HSIO Lanes 30 30 30
Intel Smart Sound Y Y Y
ME Firmware 12 11 11

The integrated Wi-Fi uses CNVi, which allows the motherboard manufacturer to use one of Intel’s three companion RF modules as a PHY, rather than using a potentially more expensive MAC+PHY combo from a different vendor (such as Broadcom). I have been told that the cost of implementing a CRF adds about $15 to the retail price of the board, so we are likely to see some vendors experiment with mid-price models with-and-without Wi-Fi using this method.


ASRock Z390 Phantom Gaming-ITX/ac

For the USB 3.1 Gen 2 ports, Type-A ports are supported natively and motherboard manufacturers will have to use re-driver chips to support Type-C reversibility. These come at extra cost, as one might expect. It will be interesting to see how manufacturers mix and match the Gen 2, Gen 1, and USB 2.0 ports on the rear panels, now they have a choice. I suspect it will come down to signal integrity on the traces on the motherboard.


MSI MEG Z390 Godlike

For the Z390 chipset and motherboards, we have our usual every-board-overview post, covering every model the manufacturers would tell us about. Interestingly there is going to be a mini-ITX with Thunderbolt 3, and one board with a PLX chip! There are also some motherboards with Realtek’s 2.5G Ethernet controller – now if only we also had consumer grade switches.

Coffee Lake Refresh: A Refresher Test Bed and Setup
Comments Locked

274 Comments

View All Comments

  • mapesdhs - Sunday, October 21, 2018 - link

    The funny part is that, for productivity, one can pick up used top-end older hw for a pittance, have the best of both worlds. I was building an oc'd 3930K setup for someone (back when RAM prices were still sensible, 32GB DDR3/2400 kit only cost me 115 UKP), replaced the chip with a 10-core XEON E5-2680 v2 which was cheap, works great and way better for productivity. Lower single-threaded speed of course, but still respectable and in most cases it doesn't matter. Also far better heat, noise and power consumption behaviour.

    Intel is already competing with both itself (7820X) and AMD with the 9K series; add in used options and Intel's new stuff (like NVIDIA) is even less appealing. I bagged a used 1080 Ti for 450 UKP, very happy. :)
  • vanilla_gorilla - Friday, October 19, 2018 - link

    So the "Best Gaming CPU" really only has an advantage when gaming at 1080p or less? Who spends this much money on a CPU to game at 1080p? What is the point of this thing?
  • TEAMSWITCHER - Friday, October 19, 2018 - link

    Many benchmarks show the 9900k coming "oh so close" to the 10-core 7900X. I'm thinking that the "Best Gaming CPU" is Intel's wishful thinking for Enthusiasts to spend hundreds more for their X299 platform.
  • HStewart - Friday, October 19, 2018 - link

    Of course at higher resolution it depends on GPU - but from the list of games only Ashes is one stated not top of class for 4k.

    If you look at conclusion in article you will notice that most games got "Best CPU or near top in all" which also means 4k CIV 6 was interesting with "Best CPU at IGP, a bit behind at 4K, top class at 8K/16K" which tells me even though it 4k was not so great - but it was even better at 8k/16k
  • vanilla_gorilla - Friday, October 19, 2018 - link

    At 4K every CPU performs at almost the exact same frame rate. Within 1fps. Why would anyone pay this much for a "gaming CPU" that has no advantage compared to CPUs half the price over 1080p? This is insanity.

    If you are a gamer, save your money, buy a two year old intel or Ryzen CPU and spend the rest on a 4K monitor!
  • CPUGuy - Friday, October 19, 2018 - link

    This CPU is going to be amazing at 10nm.
  • eastcoast_pete - Friday, October 19, 2018 - link

    Yes, a fast chip, but those thermals?! This is the silicon equivalent to boosting an engine's performance with nitrous: you'll get the power, but at what cost? I agree with Ian and others here that this is the chip to get if a. bragging rights (fastest gaming CPU) are really important and b. money is no objective. In its intended use, I'd strongly suggest to budget at least $ 2500 -3000, including a custom liquid-cooling solution for both the 9900K and the graphics card, presumably a 2080.
    In the meantime, the rest of us can hope that AMD will keep Intel's prices for the i7 9700 in check.
  • Arbie - Friday, October 19, 2018 - link

    In the meantime, the rest of us can buy AMD, as anyone should do who doesn't require a chip like this for some professional need.
  • eastcoast_pete - Friday, October 19, 2018 - link

    @Arbie: I agree. If I would be putting a system right now, I would give first consideration to a Ryzen Threadripper 1920X. The MoBos are a bit pricey, but Amazon, Newegg and others have the 1920x on sale at around $470 or so, and its 12 cores/24 threads are enough for even very demanding applications. To me, the only reason to still look at Intel ( i7 8700) is the superior AVX performance that Intel still offers vs. AMD. For some video editing programs, it can make a sizable difference. For general productivity though, a 1920x system at current discounts is the ruling Mid/High End Desktop value king.
  • mapesdhs - Sunday, October 21, 2018 - link

    The exception is Premiere which is still horribly optimised.

Log in

Don't have an account? Sign up now